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Abstract

We present a novel finite difference implementation of a three-dimensional higher-order
ice sheet model that performs well both in terms of convergence rate and numerical
stability. In order to achieve these benefits the discretisation of the governing force
balance equation makes extensive use of information on staggered grid points. Us-5

ing the same iterative solver, an existing discretisation that operates exclusively on
the regular grid serves as a reference. Participation in the ISMIP-HOM benchmark
indicates that both discretisations are capable of reproducing the higher-order model
inter-comparison results. This allows a direct comparison not only of the resultant
velocity fields but also of the solver’s convergence behaviour which holds main differ-10

ences. First and foremost, the new finite difference scheme facilitates convergence by
a factor of up to 7 and 2.6 in average. In addition to this decrease in computational
costs, the precision for the resultant velocity field can be chosen higher in the novel
finite difference implementation. For high precisions, the old discretisation experiences
difficulties to converge due to large variation in the velocity fields of consecutive Picard15

iterations. Finally, changing discretisation prevents build-up of local field irregularites
that occasionally cause divergence of the solution for the reference discretisation.

The improved behaviour makes the new discretisation more reliable for extensive
application to real ice geometries. Higher precision and robust numerics are crucial in
time dependent applications since numerical oscillations in the velocity field of subse-20

quent time steps are attenuated and divergence of the solution is prevented. Transient
applications also benefit from the increased computational efficiency.

1 Introduction

Modelling ice sheet evolution is a challenging task since ice flow is controlled by pro-
cesses that are dominant on various spatial and temporal scales (Vaughan and Arth-25

ern, 2007; Truffer and Fahnestock, 2007; Shepherd and Wingham, 2007; Pritchard et
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al., 2009). Decomposing the inherent complexity of ice dynamics one can separate two
major components: (1) non-slip ice dynamics arising from internal deformation under
the ice weight itself and (2) dynamics introduced by lateral and basal boundary condi-
tions. This separation does not mean a superposition of independent components but
rather represents a complex system of mutual influence. Especially the second part5

(2) is controversial since basal processes are not well understood and they are held
responsible for major transitions between flow regimes. Key issues at the ice bed are
feedbacks between basal hydrology, till deformation and basal ice dynamics (Tulaczyk
et al., 2000; Johnson and Fastook, 2002; Pollard and DeConto, 2009; Fleurian et al.,
2011; Pimentel et al., 2010). The complexity is further increased by the treatment of10

the transition between the grounded ice sheet and the floating ice shelves (Schoof,
2007; Goldberg et al., 2009; Gagliardini et al., 2010), and the influence of calving at
ice fronts (Benn et al., 2007; Otero et al.; 2010; Albrecht et al., 2011). This variety of
boundary conditions has a direct impact on pure deformational dynamics, which have
to capture strong spatial variations in the ice flow. This is especially the case were15

regions of ice frozen to bedrock neighbour on areas of sliding (Fowler and Larson,
1980). Since dynamics that arise from ice deformation in turn feed back on basal and
lateral conditions, special attention has to be attributed to any simplification applied in
the deformational part.

In general, most large-scale ice sheet models describe ice as a nonlinear viscous20

and isotropic fluid to capture its deformation. Their main differences lie in the approxi-
mations used in the force balance or Stokes equation. The most comprehensive Full-
Stokes (FS) models solve the force balance equations entirely (Zwinger et al., 2007;
Hindmarsh, 2004; Jouvet et al., 2009). Although they fully capture the deformational
dynamics of ice sheets, their applicability is strongly restricted by computational limita-25

tions. Therefore approximations derived from scale analysis have been suggeted for
ice sheet modelling. On the one hand, the shallow ice approximation (SIA) assumes
dominant vertical plane shearing that balances horizontal gradients in the gravity po-
tential (Morland and Johnson, 1980; Hutter, 1983). This is a feasible approach for
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modelling the evolution of large-scale ice sheets on long time scales (Huybrechts and
de Wolde, 1999; Ritz et al., 2001). On the other hand, floating ice shelves show a ver-
tically homogeneous flow with barely any vertical shearing. For ice shelves, dynamics
are characterised by so-called lateral membrane stresses (Hindmarsh, 2004; Hind-
marsh, 2006). These stresses capture the main shelf dynamics and are comprised in5

the shallow shelf approximation (SSA) (Morland, 1986; Weis et al., 1999).
In the vicinity of the transition zones between sliding (also floating) and non-sliding

areas, the shallow approximations become inappropriate (Schoof, 2006) and a more
comprehensive approach becomes necessary. This gap is filled by models that either
superimpose the two shallow approximations (Bueler and Brown, 2009) or by so-called10

higher-order models (Blatter et al., 1995; Pattyn, 2003; Hindmarsh, 2004; Schoof and
Hindmarsh, 2010). In terms of a hierarchy, higher-order models comprise the dynamics
of both “shallow” approximations but simplifications to the vertical force balance reduce
their complexity compared to FS models. Dukowicz et al. (2010) uses a principle of
least action that allows the derivation of all these approximations in one terminology15

by subsequent simplification. However, the term higher-order model is ambiguous and
therefore Hindmarsh (2004) introduced a more rigorous classification, which is used in
the following. Our higher-order model is classified as including Multilayer Longitudinal
Stresses (LMLa), generally referred to as the Blatter/Pattyn approximation (Blatter et
al., 1995; Pattyn, 2003). In this approximation the crucial simplification is that in the20

vertical stress balance so-called bridging terms are neglected meaning a glaciostatic
assumption. As a consequence the computation of the vertical velocity field decouples
from the dynamic equations and is determined via mass conservation.

The combination of the force balance equation together with a constitutive relation,
linking stresses to strain rates, provides a system of partial differential equations that is25

in general non-linear. Though the LMLa higher-order approximation allows a separate
computation of the vertical velocity component, one still has to fully account for the
non-linear character of remaining horizontal partial differential equations (PDE). Such
non-linearity poses a great challenge to any numerical solver. Instead of solving the
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highly complex system of equations directly, most solvers work iteratively and start from
an initial guess that is updated throughout several iterations until a specified precision
is reached. Such approaches require a robust numerical implementation of the dy-
namic equations that prevents instabilities to build up iteratively (Colinge et al., 1998).
This becomes in particular crucial in applications with Neumann boundary condition at5

the base since only velocity derivatives are prescribed. One way to stabilise an iter-
ative method without changing the numerical discretisation is to introduce smoothing
algorithms that attenuate perturbations in intermediate steps. However, the physical
interpretation of such smoothed solutions is controversial. Another way is to introduce
correction algorithms that optimise the iterative result using information from preced-10

ing iterations (Hindmarsh and Payne, 1996; De Smedt et al., 2010). Such algorithms
should facilitate convergence and thereby reduce numerical instability.

However, changing the discretisation of the underlying dynamic equations gives di-
rect control on the stability of an iterative solver. In case of the higher-order dynamics,
the force balance is a partial differential equation of elliptic form. Such PDEs mainly15

solve stationary problems and are often connected to a minimisation problem (Dukow-
icz et al., 2010). Especially the numerical theory around the Stokes equation is well
established (Mattheij et al., 2005). Decoupling of the solution in adjacent points using
centred differences in the Stokes equation is an understood phenomenon. To increase
numerical coupling of the solution in adjacent points, Mattheij et al. (2005) suggest20

the computation of pressure differences on the regular grid and of velocity gradients
on staggered points. A similar approach to couple the solution in adjacent points was
suggested by Colinge et al. (1998) who introduced a combination of centred and one-
sided derivatives to stabilise the numerics in the original Blatter-type model. Their finite
difference scheme substantially reduced the number of iterations necessary to retrieve25

the solution.
In this work we present and validate a novel discretisation of the force balance equa-

tions of a LMLa higher-order model that is compared to the discretisation suggested in
Pattyn (2003). In Sect. 2 we clarify our notation and introduce the model equations. We
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suggest readers familiar with the topic to directly advance to Sect. 2.2 where the novel
finite difference scheme is introduced. A short mathematical background is presented
in Sect. 2.3. Section 3 summarises the characteristics of the used numerical solver.
Thereafter results from participation in the ISMIP-HOM benchmark Pattyn et al. (2008)
are presented for the two discretisations. Finally convergence properties are analysed5

and compared in Sect. 5.

2 Model description

2.1 Force balance equation

For modelling the dynamics of glacial systems we choose an orthogonal coordinate
system with three unit vectors {ex, ey , ez} in respectively horizontal x, y and vertical10

z direction. The vertical axis of our coordinate system is chosen to be perpendicular to
isolines of the gravitational field. Our thermo-mechanical approach encompasses two
balance equations for mass and momentum combined with a constitutive relation that
links the stress tensor σ to strain rates ε̇ and thus to the velocity field u = (u, v, w).
The ice body is assumed to be incompressible, meaning constant density ρ, which15

causes the balance equations to take the following form.

∂xu + ∂yv + ∂zw = 0 (1)

ρ · du

dt
= ∇σ − ρg ·ez (2)

The gradient operator ∇, being a vector of partial derivatives (∂x, ∂y , ∂z), is applied
on the stress tensor. The mean density of the ice body is represented by ρ while the20

gravitational acceleration is given by g. The acceleration term in the force balance
equation is in general omitted but not, as sometimes stated, because it is negligibly
small. On the contrary, accelerations in fact reach large values but the time needed to
adjust the velocity field and attain a new balance of forces is small. On relevant time
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scales in glaciology accelerations consequently become negligible. The stresses of the
resultant force balance are in turn related to the strain rate ε̇ via a constitutive relation
for the creep of polycrystalline ice. Here Nye’s generalisation of Glen’s flow equation is
chosen:

τi j = 2η ε̇i j (3)5

η =
1
2
A−1/n

0 (ε̇e + ε̇0)1/n−1 (4)

where τi j are deviatoric stresses, n is the Glen index and A0 is a rate factor. The
positive scalar η is the effective viscosity, which is defined via the second invariant
of the strain rate ε̇2

e = 1
2

∑
i ,j
ε̇i j ε̇i j making it independent of the particular coordinate

system. The strain rate tensor is the link between the applied forces and the response10

of the material in terms of velocity gradients ε̇i j = 1
2

(
∂iuj +∂jui

)
. Following Pattyn

(2003) a negligible offset ε2
0 = 10−30 yr−2 is used to prevent singularities beneath the

ice divide for a frozen bed.
The comprehensive set of Eqs. (1–4) is simplified to obtain a LMLa higher-order

model (cf. Hindmarsh, 2004) following the notation in Pattyn (2003). Using the glacio-15

static approximation any bridging effects from horizontal gradients of the vertically di-
rected shearing field are neglected in the force balance Eq. (2). This is combined with
the assumption that horizontal gradients in the vertical velocity field are negligible com-
pared to vertical gradients of horizontal velocities (∂xw � ∂zu, ∂yw � ∂zv). These
two approximations cause a decoupling of the horizontal velocity field from the vertical20

one that can diagnostically be determined via mass conservation (1). Both approxima-
tions reduce the applicability of the LMLa model to ice geometries with large horizontal
extent compared to their ice thickness. An additional reformulation of the resulting
equations is undertaken using a coordinate transformation (x, y, x) → (x′, y ′, ζ ) with
ζ = (s − z)/H that is dependent on ice thickness H and surface elevation s. The force25
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balance in x-direction is then rewritten analogue to Eq. (44) in Pattyn (2003)

4 ·∂x′ (η∂x′u) + 4ax ·∂x′
(
η∂ζu

)
+ 4ax ·∂ζ (η∂x′u) + ∂y ′

(
η∂y ′u

)
+ ay ·∂y ′

(
η∂ζu

)
+

ay ·∂ζ
(
η∂y ′u

)
+
(

4a2
x + a2

y + a2
z

)
·∂ζ

(
η∂ζu

)
+
(
4bx + by

)
η · ∂ζu

=
ρg ·∂x′s − 2 ·∂x′

(
η∂y ′v

)
− ∂y ′ (η∂x′v) − 2ay ·∂x′

(
η∂ζv

)
−

2ax ·∂ζ
(
η∂y ′v

)
− 3axay ·∂ζ

(
η∂ζv

)
− ax ·∂y ′

(
η∂ζv

)
− ay ·∂ζ (η∂x′v) − 3cxyη · ∂ζv.

(5)

The coefficients ax, ay , bx, by and cxy are defined via the coordinate transformation
and details are given in Appendix A. In the y-direction the force balance takes an
analogue form. The effective viscosity in turn takes the following form.5

η = 1
2A

−1/n
0

{
(∂x′u+ax ·∂ζu)2 + (∂y ′v+ay ·∂ζv)2 + (∂x′u+ax ·∂ζu) · (∂y ′v+ay ·∂ζv)+

+1
4 (∂y ′u+ay ·∂ζu+ ∂x′v+ax ·∂ζv)2+ a2

z
4 (∂ζu)2 + a2

z
4 (∂ζv)2 + ε̇0}

1−n/2n (6)

In order to find a unique solution for Eqs. (5) and (6), boundary conditions are required.
At the ice-free points around the lateral boundary we set not only the ice thickness H to
zero but also the velocity field. This Dirichlet boundary condition is widely used in ice
sheet modelling although resulting margin gradients are thus dictated by grid spacing.10

The upper surface is assumed to be stress free. This implies (Van der Veen, 1999)[(
4 ·∂xu + 2 · ∂yv

)
· ∂xs +

(
∂yu + ∂xv

)
· ∂ys − ∂zu

]∣∣
s = 0, (7)

evaluated at the surface (z = s). A similar equation with an additional friction term
would define sliding at the base (see Eqs. 15 and 16). However since the novel dis-
cretisation is for the bulk Eq. (5), no-slip conditions (ub = vb = 0) are assumed for the15

moment. To retrieve the vertical velocity, one makes use of the incompressibility Eq. (1)
and integrates it from the ice sheet base b to z.

In the following, Eq. (5) is rewritten such that most terms are substituted by two
operators. Except for three terms in Eq. (5), all summands contain a derivative of
the product of effective viscosity with an inner velocity derivative. Making use of this20
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similarity, we introduce two operators Ω,Ψ that act on k times continuous differentiable
functions f ,g ∈ Ck(R3).

Ω(s, g,f ) ≡ ∂s (g · ∂sf )
Ψ(s, t, g,f ) ≡ ∂s (g · ∂tf )

, while s 6= t with s,t ∈ {x′,y ′,ζ} and k ≥2 (8)

With them Eq. (5) can be rewritten as follows.

4 ·Ω
(
x′, η, u

)
+ 4ax ·Ψ

(
x′, ζ , η, u

)
+ 4ax ·Ψ

(
ζ, x′, η, u

)
+Ω

(
y ′, η, u

)
+ ay ·Ψ

(
y ′, ζ , η, u

)
+

ay ·Ψ
(
ζ, y ′, η, u

)
+
(

4a2
x + a2

y + a2
z

)
·Ω(ζ, η, u) +

(
4bx + by

)
η · ∂ζu

=
ρg ·∂x′s − 2 ·Ψ

(
x′, y ′, η, v

)
− Ψ

(
y ′, x′, η, v

)
− 2ay ·Ψ

(
y ′, ζ , η, v

)
−

2ax ·Ψ
(
ζ, y ′, η, v

)
− 3axay ·Ω(ζ, η, v) − ax ·Ψ

(
ζ, y ′, η, v

)
−ay ·Ψ

(
ζ, x′, η, v

)
− 3cxyη · ∂ζv.

(9)5

The uniformity introduced by these two operators can be exploited both on the level
of discretisation and programming. In analogy to the x-direction, the force balance in
y-direction can also be rewritten in terms of these two operators.

2.2 Numerical realisation of main operators

In order to solve Eqs. (5), (6) and (7) on a fixed grid two finite difference schemes10

are suggested. On the one hand a “direct” discretisation (DIR) is applied that approx-
imates any derivative with a centred first-order difference scheme. The DIR scheme
exclusively uses information on the regular grid as suggested in Pattyn (2003). The
non-uniform vertical grid spacing is treated by centred differences that are weighted
with coefficients derived from Newton’s polynomial approximation formula (see Ap-15

pendix B, Eqs. B7 and B8). On the other hand, a second discretisation is presented
that extensively uses information on staggered grid points (STAG).

Equations (6) and (7) show exclusively first order derivatives that are approximated
with first order centred differences in both DIR and STAG. The surface boundary
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condition (7) is treated in exactly the same way with the vertical gradient being calcu-
lated by a one-sided difference scheme of second order. Although centred differences
are applied in both discretisations, effective viscosities (6) are computed at different
points. While DIR defines η on regular points, STAG computes them in the grid box
centre (see Fig. 1). Consequently the centred differences in DIR cover twice the grid5

spacing while STAG operates on one grid box extent only. Since velocities are defined
on the normal grid, the STAG scheme needs to initially average the four velocities on
each side of the box. Subsequently derivatives are calculated using values at opposite
faces of the cell, i.e. the derivative in x-direction requires the velocity field averaged
in the y,ζ -plane. Thus, the computation of velocities and viscosities profits from the10

advantages of an Arakawa B grid (Arakawa and Lamb, 1977). Moreover the STAG dis-
cretisation of the effective viscosity reduces the truncation error of the velocity deriva-
tives compared to DIR. Note however that the truncation error is not necessarily a good
indicator for the accuracy of a discrete solution (Veldmann and Rinzema, 1992) and in
particular for non-uniform grid spacing.15

The main difference between the two schemes lies in the discretisation of the force
balance Eq. (9). This concerns the finite difference approximation used for the three
terms with first derivatives as well as the two operators Ω,Ψ. The two first derivatives of
the velocity field and the one of the surface elevation are in both approaches computed
via centred differences between two adjacent grid points. The two discretisations thus20

ultimately differ in the realisation of the two operators Ω,Ψ, that are defined via

Ω(s, g,f ) ≡ ∂s (g · ∂sf ) =∂sg · ∂sf +g · ∂2
s f

Ψ(s, t, g,f ) ≡ ∂s (g · ∂tf ) =∂sg · ∂tf +g · ∂s∂tf
(10)

In the DIR scheme, operators are rewritten using the chain rule (right hand side of
Eq. 10) and the resultant summands show derivatives that are approximated by centred
differences of first order. This DIR discretisation is presented in detail in Pattyn (2003)25

accepting that the discretisation of η leaves the compact stencil. In contrast to applying
the chain rule in DIR, the STAG scheme profits from the compact definition of Ω,Ψ.
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The terms in brackets, being input for the outer derivative, are here computed on stag-
gered points. Consequently the effective viscosity and the inner derivative need to be
determined on the right, staggered position for a centred difference approximation of
the outer derivative. With the finite differences spanning only one grid cell, the STAG
scheme shows naturally a reduced truncation error.5

A detailed description of the STAG scheme, giving the full decomposition in finite
differences, is provided in Appendix B. In this section a more heuristic description is
presented to clarify the fundamental steps. To illustrate them, we focus on the horizon-
tal operator Ψ(x,y,η,u) = ∂x

(
η ·∂yu

)
that has the advantage to act on an equidistant

mesh. The term in brackets, still undergoing the derivative in x, is determined in be-10

tween adjacent grid points in x-direction. This allows a central difference approximation
of the x-derivative on half the grid spacing. For this purpose both the velocity derivative
in y-direction and the effective viscosity need to be determined at the relevant position.
As illustrated in Fig. 2, this is achieved in four steps.

1. First, one linearly averages adjacent velocities to get values in between adjacent15

points in x-direction ui+ 1
2 ,j

.

2. With ui+ 1
2 ,j

, the centred derivative in y-direction is calculated giving (∂yu)i+ 1
2 ,j+

1
2

in
the middle of x,y-faces. This derivative is then multiplied with a viscosity average
(η ·∂yu)i+ 1

2 ,j+
1
2

of two adjacent grid cell centres.

3. Subsequent computation of the centred derivative in x-direction of (η ·∂yu)i+ 1
2 ,j+

1
2

20

provides ∂x(η ·∂yu)i ,j+ 1
2
.

4. Averaging the derivative field ∂x(η ·∂yu)i ,j+ 1
2

linearly in y-direction, one obtains it
on the regular grid (cf. Fig. 2).

Swapping x and y , the operator Ψ(y,x,η,u) is determined in an analogue way. Deriva-
tives operating on the vertical axis hold an additional complexity since equal spacing in25

this direction is not mandatory. Consequently weighting coefficients are used that are
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based on Newton’s formula for a second-order polynomial approximation (see Eqs. B7
and B8). These two equations can be applied in analogy to the above discussion to
determine the STAG version of Ψ(ζ,x,u,η), Ψ(ζ,y,u,η), Ψ(x,ζ,u,η) and Ψ(y,ζ,u,η).

For Ω operators that show two derivatives in the same direction, one determines the
inner derivative in between adjacent grid points with centred differences. This derivative5

is then multiplied by a four-point average of viscosities that gives (η ·∂u) in between
adjacent, in-line grid points. The outer derivative is then determined centred over half
the grid spacing. A detailed description of the numerical implementation is presented
in Appendix B.

In summary, we have two discretisations of the force balance equation. First the10

DIR scheme that is based on centred differences for the fully decomposed operators
(cf. Pattyn, 2003). As shown, this scheme is not confined to the compact stencil for
the bulk equation. The STAG discretisation is confined to the compact stencil and
makes use of information on staggered positions. Therefore it increases coupling of
the velocity solution in adjacent grid points and reduces the truncation error.15

2.3 Numerical stabilisation

In mathematical terms, a structural difference is present in the two ways of discretising
the Ω operator. Consider the following partial differential equation in one dimension

Ω(x,η,u) = ∂x (η · ∂xu) = f , (11)

with f ∈ C(R3). To numerically approximate the solution we underlie a one dimensional20

grid with uniform spacing ∆x. The DIR discretisation makes use of the chain rule and
approximates the two resulting terms with centred differences.

(η+∂uηi∆x) ·ui+1+ (ηi −∂xηi∆x) ·ui−1−2ηi ·ui = fi∆x
2 (12)
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In the STAG scheme, (η · ∂xu)i+1/2 is determined on staggered points. This informa-
tion can in turn enter directly a centred difference approximation for the outer derivative
on half the grid extent.

ηi+ 1
2
·ui+1+ηi− 1

2
·ui−1− (ηi+ 1

2
+ηi− 1

2
) ·ui = fi∆x

2 (13)

Despite the inherent dependence of the viscosity η on the velocity field, we will treat5

it for now as a given scalar field. Since the viscosity is by definition positive (see
Eq. 5), the factors of the diagonal element are negative in both numerical schemes.
The two off-diagonal elements in the STAG discretisation Eq. (13) show positive sign,
causing the CFL-criterion to be automatically fulfilled, which guarantees numerical sta-
bility (Wesseling, 2001). In the DIR discretisation (12) this is only the case as long10

as ηi ≥‖∆x · (∂xη)i ‖. Thus the numerical stability is dependent on the chosen grid
spacing, which specifically becomes crucial where viscosity gradients become high.

In addition, if one resolves the velocity dependence of the viscosity for DIR, one
notices that the Ω operator exceeds the compact stencil during one non-linear iteration
step. This is caused by the appearance of the first viscosity derivative and it gives rise15

to error propagation solving the linear system of equations. This is also the case for
the discretisation of the Ψ operator. In contrast to this, the STAG discretisation for both
operators is confined to the compact stencil of adjacent grid points.

3 Iterative solver

3.1 Decomposition of the non-linear system of equations20

We reduce the complexity of the nonlinear system by decomposing Eq. (9) into coupled
linear equations following Pattyn (2003). The key is to iteratively update the effective
viscosity that is nonlinearly dependent on the horizontal velocity field (see Eq. 6). For
each nonlinear iteration step the viscosity field is prescribed. Doing so, the determi-
nation of the horizontal velocity field from the force balance Eq. (9) becomes a linear25
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problem. In other words, one prescribes an initial velocity field, computes the resulting
viscosity field and subsequently determines the velocity solution to the force balance.
Subsequently one enters the next nonlinear step and updates the viscosity field that is
in turn fed into the linear system.

3.2 Linear iteration5

For solving the linear system of equations represented by Eq. (9), another decompo-
sition is made separating the two horizontal components of the velocity vector u and
v . More precisely, knowing both velocity components from the previous nonlinear iter-
ation, one uses them to retrieve the respective perpendicular component in the current
iteration r . Thus, the current r ũ becomes a function of both the previous viscosity10
r−1η and the previous y-component of the velocity field r−1v . This leads to a numerical
decoupling of the x- and y-direction of the force balance equation in the nonlinear itera-
tions and consequently reduces the matrix size of the linear system by a factor 4. Using
one of the two discretisations of the force balance equations (9), one can rewrite them
in matrix form assuming the respective perpendicular velocity component as given.15

Λx(r−1η) r ũ = bx(r−1u,r−1v)
Λy (r−1η) r ṽ = by (r−1u,r−1v)

(14)

The so-called coefficient matrices Λ are sparse in both discretisations since only a few
off-diagonal elements are non-zero. Using a grid of respectively nx, ny ,nζ points in
the x−,y− and ζ -direction, the matrix has N ×N entries with N = nx ·ny ·nζ . Among
all matrix coefficients, at most a percentage of 19/N is non-zero. This ratio falls al-20

ready below one percent for grids consisting of more than 2000 points. Linear systems
of equations that show highly sparse matrices are efficiently solved iteratively. One
prominent solver for such systems is the bi-conjugate gradient method (Press et al.,
2003). Iterative method use in general criteria that define saturated convergence. In
our case a normalised error estimate of successive solutions is selected that has to fall25

below a freely chosen threshold εlin.
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3.3 Non-linear iteration

As already discussed above, the non-linear iterations update the viscosity field and
thus simplify the force balance to a linear system. However, the viscosity holds the
full non-linearity and its values cover several orders of magnitude over an entire ice
sheet. This is a challenge for the convergence of the linear solver and a potential5

cause for instability. For the results presented here, we use a direct Picard iteration to
substitute successive solutions. This means that one substitutes the solution from the
linear solver directly ru = r ũ. However there are methods to improve the convergence
rate (e.g. Hindmarsh et al., 1996; De Smedt et al., 2010) using information from the
previous solution ru = f (r ũ, r−1u). Although such correction schemes are beneficial,10

they perturb the comparison of the two numerical schemes and are therefore omitted.
Instead, true Picard iterations are used until the normalised root mean square error
in the velocity field of consecutive solutions falls below a chosen threshold εnin. The
two criteria εlin and εnin define the quality of the solution and are referred to as the
convergence precision of the solver.15

4 Model intercomparison and validation

In the following, results from the participation in the ISMIP-HOM model intercomparison
study (Pattyn et al., 2008) are presented. First the experimental setup is specified that
serves to evaluate the two discretisations.

In the framework of this intercomparison study four out of six time independent20

experiments were selected. The remaining two add no additional challenge since
they are flow-band versions of two others. Test A is a purely geometric problem with
an inclined surface topography, frozen bed and sinusoidal bed topography. In test C,
a tilted slab of ice with constant thickness is forced with a sinusoidal sliding field at
the base. Consequently, a second form of basal boundary conditions is required that25

enables linear frictional sliding (MacAyeal, 1989).
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τbx = −β2 · u|b , τby = −β2 · v |b (15)

The basal velocity is hereby linked via a “frictional coefficient” β2 to basal drag τbx,τby
which in turn is determined via (Van der Veen, 1999)

τbx =
[
τxz − τxy · ∂yb −

(
2 ·τxx+ τyy

)
· ∂xb

]∣∣
b . (16)5

Experiments A and C use periodic boundary conditions at the lateral domain margin.
Both experiments are moreover conducted for different aspect ratios, i.e. the ratio of ice
thickness and domain extent. This ratio is linked to the length scale of the sinusoidal
perturbations. Test E2 and E1 are applications on the observed geometry of Haut
Glacier d’Arolla respectively with and without a zone of zero friction. The details to10

each experimental setup are found in Pattyn et al. (2008) while the suggested model
parameters are summarised in Table 1. All experiments were conducted on a grid with
100 equally spaced points in each horizontal direction and 100 exponentially spaced
layers in the vertical. For Haut Glacier d’Arolla (exp. E1, E2) the horizontal dimension
across the flow line was reduced to 83. In all experiments the shallow ice approximation15

serves to calculate an initial velocity field. The criteria to stop the iterative solver, i.e.
the convergence precision are set equal for both linear and non-linear iterations

εnin =εlin =ε.

Although the two discretisations yield different solutions to these experiments (Fig. 3),
they both reproduce the results of the benchmark. Differences become more evident20

when the aspect ratio decreases (Fig. 3b and d). However, results are in general within
the root mean square (rms) deviation of the higher-order model participants of the
ISMIP-HOM benchmark to their average. In the combined geometric and basal bound-
ary problem of test E2, the STAG scheme performs well but DIR finds a surface velocity
exceeding the large rms deviation. This is critical since it is the most challenging ex-25

periment with a large spread in the benchmark results. Anyway, the solution remains
smooth and its difference is also attributed to a low precision (cf. Table 2). Experiments
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A and C were also conducted on the 20 km domain to check the applicability on inter-
mediate aspect ratios. The resultant velocity fields (not shown) are also in qualitative
agreement with the benchmark results. Except for experiment E2, no major qualitative
differences in the solutions are perceived. In Sect. 5.3 non-physical irregularities in the
solution are discussed which are observed in experiment A on a 160 km domain.5

5 Numerical characteristics

The focus of this section is to compare the two discretisations by concentrating on the
characteristics of convergence. First of all, the error decrease between successive
velocity fields during the non-linear iterations is used to validate the quality of the con-
vergence. In a second step the total amount of linear iterations needed to converge10

is analysed in both numerical schemes and in a final step, we assess the numerical
stability of the discretisation.

5.1 Error decrease

The normalized root mean square difference between consecutive solutions for the
velocity field during iteration is referred to as the iteration error. This is a scale free15

scalar that has to fall below a prescribed threshold εnin to reach convergence. With
progressive iteration number, the magnitude of this iteration error decreases for most
experiments regularly in both discretisations (Fig. 4b). But with increasing precision
convergence becomes more erratic for the DIR scheme and the iteration error shows
large values even in the last few non-linear steps (Fig. 4a). This spurious behaviour20

indicates unattenuated oscillations in the velocity fields of consecutive iterations. As a
consequence the attainable precision in the DIR scheme is reduced. Curiosly these
oscillations are even observed in experiment A that uses prescribed zero velocities at
the base. Such spurious behaviour is not observed in any converged experiment for
STAG, where convergence is more regular.25
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5.2 Convergence rate

A mere comparison of the iteration error, being determined in the non-linear iteration,
does not capture the convergence behaviour in the inner, linear iterations. It is the
number of linear iterations that holds information about the actually undertaken cal-
culations and thus the computational costs for the convergence (see Table 2). The5

convergence precision comprises the two thresholds ε= εlin = εnin and it is varied in
a range of 10−3 to 10−6. Precision is defined to be higher for lower values of ε. The
main conclusion drawn from Table 2 is that STAG is computationally more efficient than
DIR. In other words, the ratio between linear iterations of STAG and DIR for each ex-
perimental setup is larger than 1. Thus the STAG discretisation allows the solver to10

retrieve the solution for a specific precision in less iterations and consequently reduces
computational costs. Furthermore, the STAG scheme can often determine the solution
more precisely than DIR. This is less pronounced in purely geometric problems but as
soon as basal sliding is allowed, convergence in the DIR scheme is only reached for
precisions up to 10−4. Knowing that precisions of at least 10−4 are necessary to guar-15

antee saturated convergence, this is a grave restriction for the application of the DIR
scheme. However, even in cases where the prescribed precision could not be reached,
we stopped the solver manually after a specific amount of non-linear iterations. This
arbitrary number was estimated consulting the non-linear steps for the same setup
with less stringent precision together with assessing the actual error decrease during20

convergence. In these not-converged experiments, the effectively reached precision is
not necessarily higher than for the last converged state of the same experiment setup
since ε influences the two convergence criteria in the linear and non-linear part of the
solver. However, most of not-converged velocity solutions remain in agreement with
the ISMIP-HOM benchmark. Anyway a lack in convergence raises concerns about the25

applicability of the retrieved solution.
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5.3 Numerical stability

In all of the conducted ISMIP-HOM benchmark experiments (Pattyn et al., 2008) the
STAG scheme gives physically reasonable results, though in two cases not strictly
converged. However, STAG does shows robust convergence that prevents possible
divergence of the resultant velocity field (see Table 2). Divergence only occurs for5

the DIR scheme and the retrieved flow field deviates by orders of magnitude from the
physically reasonable one. The diverged solution exhibits jagged structures that indi-
cate numerical instability, which occurs preferentially for the sliding experiments that
apply Neuman boundary conditions at the base, but also for the realistic geometry of
Haut Glacier d’Arolla with no-slip boundary conditions. Divergent behaviour is critical10

since it makes transient experiments almost impossible because the velocity solution
might destabilise for any realised geometry during the time evolution. To circumvent
this problem in DIR, a smoothing algorithm was applied on the viscosity field (results
not shown). In detail, η was linearly interpolated on the centre of the grid box and
subsequently interpolated back on the regular grid. This prevented divergence of the15

resultant velocity field in the DIR scheme. But this smoothing did neither facilitate nor
inhibit the convergence process. Moreover, no consistent improvement in the maximum
precision for the DIR discretisation could be stated. For these reasons, a smoothing
algorithm seems capable to numerically stabilise the iterative solver and prevent di-
vergence but it appears to neither facilitate the convergence rate nor allow for higher20

precisions of the solution. Moreover, solutions from a solver using artificial smoothing
are delicate to interpret since they might miss crucial details of the dynamic behaviour.

A more detailed examination of the resultant surface velocity fields of the ISMIP-
HOM test A reveals for coarse resolutions a qualitative difference between the two
discretisations. On the 160 km domain, the maximal velocity decreases and seems to25

saturate with increasing precision (Fig. 5). Remarkable is however a feature appearing
in the DIR discretisation. For high precisions, the maximum becomes locally flat and
even shows a local depression for ε= 10−5 (see Fig. 5a). This is in contradiction with
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properties of the solution to the elliptic force balance equations (cf. Eq. 5). For this low
aspect ratio, velocities are dominated by vertical plane shearing and magnitudes are
comparable with the solution of the shallow ice approximation. In such a situation ap-
pendix C suggets that local extrema in the horizontal velocity field are ultimately linked
to extrema in the basal topography. A local minimum in bedrock elevation thus goes5

along with one local maximum in the velocity field. Identifying three adjacent local ex-
trema in the DIR velocity field indicates that its discretisation breaks properties of the
solution to an elliptic PDE as the force balance Eq. (5). At least, these properties are
not captured in this specific example with coarse resolution. Existence of spurious ex-
trema can also be a seed for destabilisation during the iterative process of determining10

the solution.

6 Summary and outlook

In this study we compare two numerical discretisations of the force balance Eq. (5)
used in a Blatter/Pattyn higher-order ice sheet model. We use a LMLa higher-order
model in the notation of Hindmarsh (2004) that applies some simplification to the full15

Stokes equation. The first discretisation, referred to as the DIR scheme, uses the
chain rule to decompose all terms in the force balance to substitute each by centred
difference, as suggested by Pattyn (2003). The new STAG discretisation makes use
of the present double derivatives and computes the terms necessary for the outer
derivative on staggered grid points (see Fig. 2).20

In general both discretisations reproduce the results presented in the ISMIP-HOM
benchmark experiments (Pattyn et al., 2008). The good agreement between the two
discretisations in the resultant velocity fields encourages a clean comparison of their
convergence behaviour. Altogether, we note that the new scheme facilitates the con-
vergence and reduces the total amount of iterations by a factor of up to 7 and in av-25

erage by 2.6 (see Table 2). This implies a decrease in iterative calculations making
it computationally more efficient. Another benefit using the STAG scheme becomes
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apparent with increased convergence precision. In most conducted experiments the
STAG solution can attain a higher precision than possible in the DIR discretisation.
This indicates that oscillations between velocity fields of consecutive iterations are pre-
vented. Spurious oscillations entering the periodic boundary conditions will even more
deteriorate the solution of the linear part of the solver and inhibit convergence for high5

precision. The attainable high precision for the STAG solution therefore indicates ro-
bust numerics. For experiment A on the coarsest resolution, the DIR surface velocity
field along a flow line shows three adjacent local extrema in the zone of fastest flow.
For this experiment, such features are per se not feasible in the solution to the elliptic,
partial differential equation for the force balance. Additionally, such local irregularities10

can be a seed for destabilisation of the iterative process. In four out of 18 experiments
destabilisation even causes divergence of the DIR velocity field throughout the itera-
tions. Consequently no physical velocity solution is found for a specific experimental
setup. Such deficiency is not observed in the STAG scheme indicating robustness of
its numerical discretisation, which prevents the iterative build up of perturbations.15

Increased convergence rate, higher precision and prevention of divergence in the
STAG discretisation make the presented discretisation more reliable for any applica-
tion on observed or artificial geometries. Especially in time-dependent mode, with
prognostic evolution of the ice geometry, divergence in the velocity solution would pose
a huge problem. Being more robust the new discretisation stabilises the transient be-20

haviour. But not only a converged velocity field is important in time dependency. Also
precision is decisive since low precision results in not fully converged velocity fields and
consequently a deficient geometry evolution. These inaccuracies in turn feed back on
the velocity field of the next time step and thus transmit in a prognostic way. Only high
accuracy guarantees physically correct feedbacks between higher-order dynamics and25

geometry evolution in transient applications.
Although the new discretisation facilitates convergence, the increase in calculation

speed is only a welcome side effect. To decrease computational costs significantly
we suggest the application of more efficient mathematical solvers. Another option is

1589

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/4/1569/2011/gmdd-4-1569-2011-print.pdf
http://www.geosci-model-dev-discuss.net/4/1569/2011/gmdd-4-1569-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
4, 1569–1610, 2011

Improved
convergence and

stability properties

J. J. Fürst et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

to combine the applied solver with some correction algorithm that improves the con-
vergence rate. A useful method, the “stable manifold” correction, was presented in De
Smedt et al. (2010). An additional improvement to the presented discretisation could be
expected by a strict separation of geometry on regular points and velocity on staggered
points as suggested by Mattheij et al. (2005). In case Neumann boundary conditions5

are used at the base, revising the centred discretisation of the boundary layer equation
may give an additional benefit.

Appendix A

A dimensionless vertical coordinate system is used that normalises the vertical axis
via ζ = (s − z)/H . This results in a vertical coordinate that varies from zero at the10

surface s to one at the glacier bed b. Since the two horizontal axes rest unchanged,
the Jacobian of this coordinate transformation to (x′, y ′, ζ ) takes a simple form. For a
function f = f (x,y,z) in the class of k times continuous differentiable functions Ck(R3)
(for k ≥2) this yields

∂xf = ∂x′f + ax′ · ∂ζ f
∂y f = ∂y ′f + ay ′ · ∂ζ f
∂zf = az · ∂ζ f ,

(A1)15

while the coefficients denote the non-zero elements of the Jacobian.

ax = ∂x′ζ = 1
H (∂x′s − ζ · ∂x′H)

ay = ∂y ′ζ = 1
H (∂y ′s − ζ · ∂y ′H)

az = ∂zζ = − 1
H

(A2)
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However, the balance Eq. (8) also shows second order derivatives in all variables. Only
four of the possible second derivates actually occur.

∂xxf = ∂x′x′f + bx ·∂ζ f + a2
x ·∂ζζ f + 2ax ·∂x′ζ f

∂yy f = ∂y ′y ′f + by ·∂ζ f + a2
y ·∂ζζ f + 2ay ·∂y ′ζ f

∂zzf = a2
z ·∂ζζ f

∂xy f = ∂x′y ′f + cxy ·∂ζ f + ay ·∂x′ζ f + ay ·∂y ′ζ f + axay ·∂ζζ f ,

(A3)

For these derivatives the coefficients are defined as follows.

bx = ∂x′ax + ax · ∂ζax
by = ∂y ′ay + ay · ∂ζay
cxy = ∂x′ay + ax · ∂ζay .

(A4)5

Appendix B Discretisation of bulk equation

This section deals with the detailed description of the numerical discretisation of the
bulk equation (9). In the following a short overview is given how the two operators
Ω,Ψ are numerically realised for an equidistant mesh as well as for a non-equidistant
mesh with weighting based on Newton’s parabolic interpolation formula.10

B1 Equidistant mesh

In the horizontal plane the adjacent grid points have uniform spacing (∆x, ∆y). Thus
horizontal derivatives can directly be translated via centred differences. It is sufficient
to present the operators Ω(x,η,u) and Ψ(y,x,η,u) since the other two horizontal oper-
ators follow in analogy.15
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B1.1 In-line derivative Ω(x,η,u)

The in-line derivative Ω(x,η,u) is formed by determining the inner term η ·∂xu in the
centre between to adjacent points in x. These are subsequently used to determine the
outer centred derivative. In detail this reads.

ηi+1/2,j
(∂u
∂x

)
i+ 1

2 ,j
= 1

2∆x

[(
ui+1,j −ui ,j

)
·
(
ηi+ 1

2 ,j+
1
2
+ηi+ 1

2 ,j−
1
2

)]
ηi−1/2,j

(∂u
∂x

)
i− 1

2 ,j
= 1

2∆x

[(
ui ,j −ui−1,j

)
·
(
ηi− 1

2 ,j+
1
2
+ηi− 1

2 ,j−
1
2

)] (B1)5

In the vertical both terms are determined on grid layers (index omitted) and, since
viscosities are defined in grid box centres, one has to average on layer ζk .

ηi+ 1
2 ,j+

1
2
=

ζk − ζk−1

ζk+1 − ζk−1
·ηi+ 1

2 ,j+
1
2 ,k+

1
2
+

ζk+1 − ζk
ζk+1 − ζk−1

·ηi+ 1
2 ,j+

1
2 ,k−

1
2

(B2)

Knowing the inner derivative in between adjacent points in x-direction, the outer x-
derivative of Ω(x,η,u) is conveniently approximated by a centred difference.10

∂
∂x

[
η
(∂u
∂x

)]
i ,j =

1
∆x

[
ηi+ 1

2 ,j
(∂u
∂x

)
i+ 1

2 ,j
−ηi−1/2,j

(∂u
∂x

)
i− 1

2 ,j

]
=

= 1
2∆x2

[
ui+1,j

(
ηi+ 1

2 ,j+
1
2
+ηi+ 1

2 ,j−
1
2

)
+ui−1,j

(
ηi− 1

2 ,j+
1
2
+ηi− 1

2 ,j−
1
2

)
−

−ui ,j

(
ηi+ 1

2 ,j+
1
2
+ηi+ 1

2 ,j−
1
2
+ηi− 1

2 ,j+
1
2
+ηi− 1

2 ,j−
1
2

)] (B3)

B1.2 Cross derivative Ψ(y,x,η,u)

Numerically these two perpendicular derivatives are determined within the compact
stencil in the x,y-plane. The first step (cf. Fig. 1) is to average the regular grid ve-
locities in y-direction. A centred derivative in x of this averaged velocity field defines15

(∂xu)i+ 1
2 ,j+

1
2
, staggered in the x− and y-direction. As before, the effective viscosity is

1592

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/4/1569/2011/gmdd-4-1569-2011-print.pdf
http://www.geosci-model-dev-discuss.net/4/1569/2011/gmdd-4-1569-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
4, 1569–1610, 2011

Improved
convergence and

stability properties

J. J. Fürst et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

vertically averaged to find ηi+ 1
2 ,j+

1
2
(cf. Eq. B2).

ηi− 1
2 ,j+

1
2

(∂u
∂x

)
i− 1

2 ,j+
1
2
= 1

2∆xηi− 1
2 ,j+

1
2
·
[(
ui ,j+1+ui ,j

)
−
(
ui−1,j+1+ui−1,j

)]
ηi− 1

2 ,j−
1
2

(∂u
∂x

)
i− 1

2 ,j−
1
2
= 1

2∆xηi− 1
2 ,j−

1
2
·
[(
ui ,j +ui ,j−1

)
−
(
ui−1,j +ui−1,j−1

)] (B4)

These two terms are averaged in x-direction after the y-derivatives are determined via
centred differences.
∂
∂y

[
η
(∂u
∂x

)]
i ,j =

1
2

∂
∂y

{[
η
(∂u
∂x

)]
i− 1

2 ,j+
1
2
+
[
η
(∂u
∂x

)]
i+ 1

2 ,j+
1
2

}
=

= 1
4∆y∆x

[
ui ,j

(
ηi−1/2,j+1/2+ηi+1/2,j−1/2−ηi−1/2,j−1/2−ηi+1/2,j+1/2

)
+

+ui ,j+1

(
ηi−1/2,j+1/2−ηi+1/2,j+1/2

)
+ui ,j−1

(
ηi+1/2,j−1/2−ηi−1/2,j−1/2

)
+

+ui+1,j

(
ηi+1/2,j+1/2−ηi+1/2,j−1/2

)
+ui−1,j

(
ηi−1/2,j−1/2−ηi−1/2,j+1/2

)
+

+ui−1,j−1ηi−1/2,j−1/2+ui+1,j+1ηi+1/2,j+1/2−
−ui+1,j−1ηi+1/2,j−1/2−ui−1,j+1ηi−1/2,j+1/2

]
(B5)5

Given these two examples, forms Ω(y,η,u) and Ψ(x,y,η,u) follow by simple substitu-
tion.

B2 Vertically non-equidistant mesh

With a generally non-equally spaced vertical grid, a finite difference scheme for the two
operators becomes more elaborate. First we introduce some notation for the chosen10

vertical spacing ζk .

∆ζk+ 1
2
= ζk+1−ζk or ∆ζk =

1
2

(ζk+1−ζk−1) (B6)

In the vertical the Newton formula yields the following interpolation for a second order
approximation of function values fk .

fk =
∆ζk+ 1

2

2 ·∆ζk
· fk+ 1

2
+
∆ζk− 1

2

2 ·∆ζk
· fk+ 1

2
(B7)15
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This weighting can be used to retrieve a finite difference approximation for the vertical
derivative based on a centred scheme.(
∂f
∂ζ

)
k
=

∆ζk− 1
2

∆ζk+ 1
2
·∆ζk

· fk+ 1
2
−

∆ζk+ 1
2

∆ζk− 1
2
·∆ζk

· fk− 1
2
+
∆ζk+ 1

2
−∆ζk− 1

2

∆ζk+ 1
2
·∆ζk− 1

2

· fk (B8)

Assuming equal vertical spacing (∆ζk =∆ζk+ 1
2
=∆ζk− 1

2
=∆ζ ) this form reduces to the

normal centred difference approximation by removing the last term.5

B2.1 In-line derivative Ω(ζ ,η,u)

In analogy to the equally spaced grid but applying Eqs. (B6–B8), this in-line derivative is
computed as follows. For the in-line staggered point, the inner derivatives can directly
be calculated using centred differences. However, the term η∂ζu will also be needed
on the regular grid and for this we use Eq. (B8).10

ηi ,j,k+ 1
2
·
(
∂u
∂ζ

)
i ,j,k+ 1

2

= 1
∆ζk+ 1

2

ηi ,j,k+ 1
2
·
{
ui ,j,k+1−ui ,j,k

}
ηi ,j,k ·

(
∂u
∂ζ

)
i ,j,k

= 1
2ηi ,j,k ·

{ ∆ζk− 1
2

∆ζk+ 1
2
∆ζk

ui ,j,k+1−
∆ζk+ 1

2
∆ζk− 1

2
∆ζk

ui ,j,k−1+
∆ζk+ 1

2
−∆ζk− 1

2
∆ζk+ 1

2
∆ζk− 1

2

ui ,j,k

}
ηi ,j,k− 1

2
·
(
∂u
∂ζ

)
i ,j,k− 1

2

= 1
∆ζk− 1

2

ηi ,j,k− 1
2
·
{
ui ,j,k−ui ,j,k−1

} (B9)

Since effective viscosities are needed on respective intermediate grid points, one
averages the calculated staggered values ηi+ 1

2 ,j+
1
2 ,k+

1
2

appropriately. The extra

division by two appearing in the expression for ηi ,j,k ·
(
∂ζu

)
i ,j,k

, originates from
determining the three terms in Eq. (B8) on the regular grid. Applying the same equa-15

tion another time, now unmodified, one obtains a numerical approximation for Ω(ζ,ν,u).
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∂
∂ζ

(
η
(
∂u
∂ζ

))
i ,j,k

=
∆ζk− 1

2

2∆ζ2

k+ 1
2

∆ζk
ηi ,j,k+ 1

2
·
(
∂u
∂ζ

)
i ,j,k+ 1

2

−
∆ζk+ 1

2

2∆ζ2

k− 1
2

∆ζk
ηi ,j,k− 1

2
·
(
∂u
∂ζ

)
i ,j,k− 1

2

+

+

(
∆ζk+ 1

2
−∆ζk− 1

2

)
2∆ζk+ 1

2
∆ζk− 1

2

ηi ,j,k ·
(
∂u
∂ζ

)
i ,j,k

= ui ,j,k+1 ·

 ∆ζk− 1
2

2∆ζ2

k+ 1
2

∆ζk
ηi ,j,k+ 1

2
+

(
∆ζk+ 1

2
−∆ζk− 1

2

)
2∆ζ2

k+ 1
2

∆ζk
ηi ,j,k

+

+ui ,j,k−1 ·

 ∆ζk+ 1
2

2∆ζ2

k− 1
2

∆ζk
ηi ,j,k− 1

2
+

(
∆ζk+ 1

2
−∆ζk− 1

2

)
2∆ζ2

k− 1
2

∆ζk
ηi ,j,k

+

+ui ,j,k ·


(
∆ζk+ 1

2
−∆ζk− 1

2

)2

2∆ζ2

k+ 1
2

∆ζ2

k− 1
2

ηi ,j,k−
∆ζk+ 1

2

2∆ζ2

k− 1
2

∆ζk
ηi ,j,k− 1

2
−

∆ζk− 1
2

2∆ζ2

k+ 1
2

∆ζk
ηi ,j,k+ 1

2



(B10)

Again, assuming uniform spacing in the vertical, this equation reduces to the form
Ω(x,η,u) in Eq. (B3).

B2.2 Cross derivative Ψ(x,ζ ,η,u)5

This function’s inner derivative is computed with a centred difference scheme. But in
analogy to the equidistant form, the velocities are beforehand averaged in x-direction.
This provides values for ∂x(η ·∂ζu)i+ 1

2 ,j,k+
1
2

at each centre of grid box x,ζ -faces.

ηi− 1
2 ,j,k+

1
2

(
∂u
∂ζ

)
i− 1

2 ,j,k+
1
2

=
1

2∆ζk+ 1
2

ηi− 1
2 ,j,k+

1
2
·
{(

ui ,j,k+1−ui ,j,k
)
+
(
ui−1,j,k+1−ui−1,j,k

)}
(B11)

To compute the final derivative on the regular grid (cf. Fig. 1), vertical averaging10

becomes necessary followed by approximating the horizontal derivative by a centred
difference.
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∂
∂x

(
η
(
∂u
∂ζ

))
i ,j,k

= 1
4∆x∆ζk

[
ui+1,j,k−1 ·
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−
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2
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2

ηi+ 1
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1
2

}
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2
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2
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2 ,j,k+

1
2

}]

(B12)

B2.3 Cross derivative Ψ(ζ ,x,η,u)

Swapping the sequence of derivatives affects the numerical realisation of Ψ(ζ,x,η,u)
for the non-equidistant vertical spacing. This means one cannot just swap the indices5

in Eq. (B12) to retrieve the respective coefficients. Anyway, the derivation is in anal-
ogy to the previous operator (see also Fig. 1) and one finds the following approximation.
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(B13)

Since the vertical derivative is computed with vertical weighting (see Eq. B8), terms
showing differences in adjacent layers thicknesses∆ζk+1/2 −∆ζk−1/2 appear in this
equation. These terms are highly sensitive to the actual structure of the used verti-5

cal discretisation. Note that the two cross derivatives Ψ(ζ,x,η,u) and Ψ(x,ζ,η,u) are
numerically not the same.

Appendix C Analysis on large scales

In this section an argument is derived for local extrema in the velocity field of the
higher-order model on large-scale ice sheets. Extrema in the surface velocity field10

are ultimately linked to extrema in bedrock topography.
For the following analysis, the force balance Eq. (9) is reduced to 2 dimension. This

allows rewriting the elliptic operator
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P[u(x,ζ )]= f (x) (C1)

with

P[u(x,ζ )]=4 ·Ω(x,η,u)+4ax · {Ψ(x,ζ,η,u)+Ψ(ζ,x,η,u)}+
(

4a2
x+a2

z

)
·Ω(ζ,η,u)

f (x)=ρg ·∂xs
(C2)

As surface boundary condition serves a reduced form of Eq. (7).

4
(
∂x′u+ax ·∂ζu

)
·∂x′s+

1
H

·∂ζu=0 (C3)5

Since a large-scale ice sheet is considered where the length scale of perturbations
is long compared to the ice thickness (as in experiment A on 160 km), the following
assumptions are made. At first the effective viscosity is assumed to be a constant
η(x,ζ )=η0, which simplifies the double mixed derivatives in the two operators.

P[u(x,ζ )]≈4η0 ·∂2
xu+8axη0 ·∂2

xζu+
(

4a2
x+a2

z

)
η0 ·∂2

ζu (C4)10

This equation illustrates the elliptic character of the underlying partial differential equa-
tion. Ellipticity signifies an inequality for the three factors, which is in this case auto-
matically fulfilled.

4η0 ·
(

4a2
x+a2

z

)
η0− 1

4 (8axη0)2 =4η2
0a

2
z >0 (C5)

The second assumption for large-scale ice sheets is that vertical plane shearing is well15

described by the shallow ice approximation. This links vertical velocity gradients to the
surface slope.

∂ζu≈2A0 (ρg)nHn+1ζn · |∂xs|
n−1∂xs (C6)

With these assumptions we focus on the near surface region, i.e. ζ = ε� 1. The
second vertical derivative and the coefficient ax become.20

∂2
ζ u|ε ≈2A0 (ρg)nHn+1nεn−1 · |∂xs|

n−1∂xs
ax |ε = 1

H (∂xs−ε ·∂xH)= 1
H ((1−ε) ·∂xs−ε ·∂xb)

(C7)
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Near the surface the upper boundary condition (C3) is applicable, linking vertical and
horizontal derivatives. Together with Eqs. (C7) the operator takes the following form.

P[u(x,ζ )]≈
{

4η0
H ((1−ε) ·∂xs−ε ·∂xb)− η0

H ·∂xs

}
·∂2

xζu+

2nA0η0 (ρg)n
(

4a2
x+a2

z

)
Hn+1εn−1 · |∂xs|

n−1∂xs
(C8)

For a constitutive equation using a flow index of three, terms with exponents higher
than 1 in ε are neglected. This finally provides5

P[u(x,ζ )]≈
η0

H

(
4(1−ε) ·∂xs+4ε ·∂xb−

1
∂xs

)
·∂2

xζu=ρg ·∂xs (C9)

With the assumption that the vertical part of the double derivative is well described by
the shallow shelf approximation, this derivative does not change sign. Thus changes
in signs due to the bedrock topography have to be compensated for by the horizontal
velocity derivative as long as the right hand side and thus the surface slope does not10

change sign.
Applied to the main flow line in experiment A of the ISMIP-HOM benchmark test

(Pattyn et al., 2008) on a 160 km domain, the surface slope is a constant value, while
ice thickness varies sinusoidal together with bedrock topography. Thus all terms of the
sum are constant except for the bedrock topography. Where the ice depth is deepest,15

the bed slope changes from negative to positive sign causing the x-velocity gradient to
change likewise in a close vicinity. This results in a maximal velocity since the vertical
derivative part is supposed to show a negative sign. Consequently in this case of low
aspect ratio, velocity extrema are ultimately linked to bed topography.
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Table 1. Overview of model parameters used in the ISMIP-HOM benchmark (Pattyn et al.,
2008).

Symbol Description Value Unit

A0 Rate factor in the flow equation 1.0 ·10−16 Pa−3 a−1

g Gravitational acceleration constant 9.81 m s−2

ρ Average density of ice body 910 kg m−3

n Exponent in Glen’s flow equation 3 -
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Table 2. Convergence behaviour of the DIR and the STAG discretisation for the ISMIP-HOM
experiments. The convergence precision is equal for linear and non-linear iterations and varied
from 10−3 to 10−6. Note that the number of linear iterations is proportional to the computational
costs. “•” signifies that the precision could not be reached and the convergence was manually
stopped after an reasonable number of non-linear iterations. Divergence of the resultant ve-
locity field is marked with “◦”. If a specific precision was not reached in either way, the same
experiment was not conducted with higher precision (“–”).

DIR STAG
Conv. Precision ε Total Linear Iterations Total Linear Iterations Ratio

TEST A 10−3 416 208 2.00
160 km 10−4 4614 1709 2.70

10−5 23 702 6170 3.84
10−6 • 14 441 –

TEST A 10−3 4561 3368 1.35
20 km 10−4 21 822 19 012 1.15

10−5 513 685 115 197 4.46
10−6 • 404 369 –

TEST A 10−3 14 578 9410 1.55
5 km 10−4 97 372 81 879 1.19

10−5 595 019 280 740 2.12
10−6 • 975 601 –

TEST C 10−3 4047 2312 1.75
160 km 10−4 ◦ 16 126 –

10−5 – 34 377 –
10−6 – 75 399 –

TEST C 10−3 11 853 10 870 1.32
20 km 10−4 71 088 52 227 1.36

10−5 • • –

TEST C 10−3 18 033 4376 4.12
5 km 10−4 ◦ 44 008 –

10−5 – 1 862 887 –
10−6 – • –

TEST E1 10−3 4160 1178 3.53
10−4 5494 4221 1.30
10−5 ◦ 12 572 –
10−6 – 33 901 –

TEST E2 10−3 7204 916 7.86
10−4 ◦ 4580 –
10−5 – 30 710 –
10−6 – 82 160 –
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Fig. 1. Grid cell as used in the STAG implementation. Note that velocities are defined at grid
points while effective viscosities are computed in the centre. To determine necessary velocity
derivatives one first computes the velocity on each face of the grid box.
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Fig. 2. Visualization of the operating mode of Ψ(x,y,u,η). In a first step, two adjacent velocities
are averaged in x-direction. This field is then used to form the inner derivative in y-direction
that is associated with the grid point staggered in the x,y-plane (step 2). After determining the
viscosity in this point, the outer x-derivative can be computed in a third step. The fourth and
last step is to average the resultant field in y-direction (a detailed description is presented in
Appendix A).
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Fig. 3. Resultant surface velocity fields for the ISMIP-HOM intercomparison of the DIR and
STAG discretisations for experiments A on 160 km (a) and 5 km (b), C on 160 km (c) and 5 km
(d) and E1 (e) and E2 (f). The grey shaded area indicates the root mean square (rms) deviation
of the solution from each participant compared to the mean benchmark solution (dark grey).
For the two discretisations, we chose the solution obtained with the highest possible conver-
gence precision (see Table 2). All over the results are in good agreement with the mean of the
benchmark test. The only exception is experiment E2 (f) where the DIR velocity field exceeds
the wide rms deviation.
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Fig. 4. The iteration error between successive velocity solutions is depicted throughout the
non-linear iterations for both discretisations. On the left (a) the convergence of the ISMIP-
HOM test A on a 20 km domain is shown. The error decrease in DIR is erratic and indicates
huge changes in the velocity field even in the last few iteration steps. For the same setup, the
STAG scheme is characterised by a regular decrease in the iteration error until the prescribed
precision of 10−5 is reached. In addition, less non-linear iterations are necessary to retrieve the
solution as is confirmed in test C on 20 km (b), where both discretisations show a more regular
convergence.
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Figure 4 The iteration error between successive velocity solutions is depicted throughout the non-linear 2 
iterations for both discretisations. On the left (a) the convergence of the ISMIP-HOM test A on a 20 km domain 3 
is shown. The error decrease in DIR is erratic and indicates huge changes in the velocity field even in the last 4 
few iteration steps. For the same setup, the STAG scheme is characterised by a regular decrease in the iteration 5 
error until the prescribed precision of 

€ 

10−5  is reached. In addition, less non-linear iterations are necessary to 6 
retrieve the solution as is confirmed in test C on 20 km (b), where both discretisations show a more regular 7 
convergence. 8 

 9 

 10 

Figure 5 Resultant surface velocity fields in the ISMIP-HOM test A on the largest domain of 160 km for 11 
the DIR discretisation (a) and the STAG discretisation (b). This is a close-up view of the zone of high 12 
deformation where the x-component of the bedrock gradient changes its sign. The legend entries refer to 13 
different convergence precisions expressed in the exponent of 10. For low precision, both discretisations find a 14 
solution close to the initial SIA velocity (not depicted). With increasing precision the resultant velocity fields 15 
converge to a solution with lower maxima. However, the DIR field levels out at the maxima and even shows a 16 
local minimum for the highest precision. 17 

 18 

Fig. 5. Resultant surface velocity fields in the ISMIP-HOM test A on the largest domain of
160 km for the DIR discretisation (a) and the STAG discretisation (b). This is a close-up view
of the zone of high deformation where the x-component of the bedrock gradient changes its
sign. The legend entries refer to different convergence precisions expressed in the exponent
of 10. For low precision, both discretisations find a solution close to the initial SIA velocity
(not depicted). With increasing precision the resultant velocity fields converge to a solution
with lower maxima. However, the DIR field levels out at the maxima and even shows a local
minimum for the highest precision.
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